

 PiCN

Index

PiCN Documentation

Learning

	In a Nutshell: What is behind ICN, CCN and NFN?

	Getting Started with PiCN

	Tutorial

Operational Matters

	PiCN Toolbox

	Setting up a Network

	Packet Formats

Internals

	Architecture

	Project Structure

	Management Interface

About

	Licensing

Architecture

On one side, PiCN is a set of specialized CCN nodes and tools (data repository, forwarder, in-network compute entity; management- and fetch tools).
However, also meant to be a handy toolbox for prototyping and experimentation, PiCN includes all the building blocks to quickly assemble network nodes or tools on your own.
This document describes the building blocks of PiCN.
If your are interested in ready-to-run code, go to Runnables.

Layered Architecture

At its highest level, a node in PiCN is a stack of layers.
Each layer interacts with the next higher and lower layers only.
In general, each layer raises the level of abstraction.
Via the bottom layer, the node is connected to other nodes, while the top layer optionally interfaces with a user or application.

As an example, the stack of a vanilla relay might look as following:

ICN Layer
Packet Encoding Layer
Link Layer

The Link Layer implements the face abstraction and manages the linking with neighbouring nodes.
The Packet Encoding Layer encodes and decodes wire format packets (as used by the link layer) to python objects (as handled by the ICN layer).
The ICN Layer implements the actual logic of handling incoming interest and content object packets. Also state (CS, FIB, PIT) is maintained by the ICN layer.

By convention classes implementing a layer are placed in the packet PiCN.Layers.
They inherit from the class PiCN.Processes.LayerProcess .
On OS level each layer is a separate process.

In a Nutshell...

Information Centric Networking (ICN) [https://en.wikipedia.org/wiki/Information-centric_networking]

Content Centric Networking (CCN) [https://en.wikipedia.org/wiki/Content_centric_networking]

Named Function Networking (NFN) [http://named-function.net]

Hello World!

Make sure that you have Python 3.6+ installed on your machine. In case case of doubt have a look at the output of:

python -V

Getting Started as a User

Clone the Repository

Download the latest version of PiCN to your machine:

git clone https://github.com/cn-uofbasel/PiCN.git

If you run that command in your home directory, the root of PiCN is ~/PiCN. In case you decided to clone to another directory, adjust the following commands accordingly.

Run Unit Tests (optional)

python setup.py test

or

python setup.py nosetests

Next Steps

Congratulations, PiCN runs on your machine! If you want to learn more, go to the tutorial.

Getting Started as a Developer

If you do not yet have a favourite Python IDE, we recommend you to try PyCharm (Community Edition) [https://www.jetbrains.com/pycharm/download].

1. Clone the Repository

git clone https://github.com/cn-uofbasel/PiCN.git

2. Run PyCharm

3. Open PiCN project in PyCharm

[image: PyCharm Open 1]

[image: PyCharm Open 2]

Note: Select the root of the cloned git repository.

3. Mark Sources Root (Optional)

On some systems it is necessary to mark the root folder of the python sources in PyCharm. If the following step fails, try:

	Right-click the root python packet (PiCN) in the project outline.

	Select Mark directory as.. -> Sources Root

4. Start a CCN Forwarder

	Right-click the file PiCN.Executable.ICNForwarder.py in the project outline

	Select Run ''ICNForwarder'

	If you see following output in the tool bar, a forwarder is running (UDP face on port 9000):

[image: PyCharm Relay]

Next Steps

Nice, your development environment is ready! If you want to learn more about how to setup an entire network, read the Tutorial. If you want to understand the internals of PiCN go to Architecture.

Licensing

BSD-3-clause

External Code

External code might be released under another license.

PiCNExternal.pyndn

	PyNDN2 - NDN client library with TLV wire format support in native Python

	License: GPL-3.0

	Origin: https://github.com/named-data/PyNDN2

Management Interface

This page describes the HTTP-based management protocol as implemented by PiCN-nodes like picn-relay or picn-repo. If your are interested in a command-line management tool, check picn-mgmt in runnables.

Nodes listen for commands on the port (TCP) specified on the command line (--port).

Add a Face

Instructs the link layer to create a new UDP face.

GET /linklayer/newface/< ip >:< targetport > HTTP/1.1\r\n\r\n

Return: Face ID

Add Forwarding Rule

Instructs the ICN layer to add a certain forwarding rule to the forwarding information base.

GET /icnlayer/newforwardingrule/<prefix>:<faceid> HTTP/1.1\r\n\r\n

Add Content to Cache

Instructs the ICN layer to generate a certain data packet and put it into the content store.

GET /icnlayer/newcontent/< name >:< data > HTTP/1.1\r\n\r\n

Shutdown

Instructs the main process of a runnable to terminate all layers and exit. Applies to all runnables.

GET /shutdown HTTP/1.1\r\n\r\n

Notes on ICN Name Encoding

Note that some characters within a name component must be escaped. Otherwise, it would for instance not be clear whether a / separates two components or is a single character withing a component.
We follow the URL Encoding conventions to escape unsafe characters.

	RFC 3986 [https://tools.ietf.org/html/rfc3986]

	Wikipedia [https://en.wikipedia.org/wiki/Percent-encoding]

Cheat Sheet

Escaped	ASCII	
%21	!	
%22	"	
%23	#	
%24	$	
%25	%	
%26	&	
%27	'	
%28	(
%29)	
%2A	*	
%2B	+	
%2C	,	
%2D	-	
%2E	.	
%2F	/	
%3A	:	
%3B	;	
%3C	<	
%3D	=	
%3E	>	
%3F	?	
%40	@	
%5B	[
%5C	\|	
%5D]	
%7B	{	
%7C		
%7D	}	

Setting up a Network

The picn-setup tool automatically sets up a bunch of PiCN nodes, creates faces, installs forwarding rules and adds content.
To keep track on what is going on, a setup runs in a tmux session where each node is executed within a separate `window.

Usage: picn-setup CONFIG
CONFIG:
 fwd_to_testbed -- Two hops to the NDN testbed

What is tmux?!?

The manual page says:

tmux is a terminal multiplexer: it enables a number of terminals to be created, accessed,
and controlled from a single screen. tmux may be detached from a screen and continue
running in the background, then later reattached. A session is a single collection of
pseudo terminals under the management of tmux. Each session has one or more windows
linked to it.

Survival Kit:

	Switch to next window in a tmux session (keyboard shortcut): Ctrl + n

	Detach session (keyboard shortcut): Ctrl + d

	Attach the session (shell command): tmux attach -t picn-setup

	Kill the detached session (shell command): tmux kill-session -t picn-setup

How to Install picn-setup?

picn-setup is contained by the PiCN toolbox.

Network Configurations

fwd_to_testbed

picn-setup fwd_to_testbed

	Packet format: ndntlv

	PiCN forwarder listening on UDP port 9000

	PiCN forwarder listening on UDP port 9001

	Content object /ndn/ch/unibas/test in content store of forwarder with port 9001

	Forwarding rule from 9000 to 9001 for prefix /ndn/ch/unibas

	Forwarding rule from 9001 to NDN testbed [https://named-data.net/ndn-testbed] for prefix /ndn/ch/unibas

[image: Configuration fwd_to_testbed]

More Configurations..

More configurations will follow...

Changing the Default Behaviour

With environment variables the default behavior of picn-setup can be changed:

	INITPORT: UDP port for nodes start from here (default: 9000)

	NDNTESTBED: Entry point to the NDN testbed [https://named-data.net/ndn-testbed] (default: dmi-ndn-testbed1.dmi.unibas.ch)

	LOGLEVEL: Log level (options: debug, info, warning, error, none / default: info)

	SESSION: Name of tmux session (default: picn-setup)

Enhancements: See issue #10 [https://github.com/cn-uofbasel/PiCN/issues/10].

Packet Formats

PiCN tools and nodes can operate with different packet formats. At the moment, the following formats are available:

	ndntlv (default)

	simple

NDN Packet Fomat and Link Protocol (ndntlv)

Specification

	NDN Packet Format Specification 0.2-2 [http://named-data.net/doc/NDN-packet-spec/current]

	NDN Link Protocol v2 [https://redmine.named-data.net/projects/nfd/wiki/NDNLPv2]

Implementation Status

Partial

Extensions

Additional NACK reasons (link protocol):

Value	Reason	Description
160	NO_CONTENT	No content available
161	COMP_QUEUE_FULL	No resources to perform computation
162	COMP_PARAM_UNAVAILABLE	One or many input data is unavailable
163	COMP_EXCEPTION	An excpetion occured during computation
164	COMP_TERMINATED	Computation terminated by computing entity

Detailed desciption in PiCN.Packets.NackReason.py [https://github.com/cn-uofbasel/PiCN/blob/master/PiCN/Packets/NackReason.py]

Simple (simple)

String-based and human-readable packet format. For debug-purposes only.

Package Structure

Package Structure of PiCN.

PiCN

	Executable: This package contains starter scripts for network nodes and tools for management and content retrieval

	Fetch: Tool to fetch a high-level object (resolves chunking)

	ICNDataRepository: Sets up a data repository

	ICNForwarder: Sets up a forwarder

	Mgmt: Tool to send a management command to a node

	NFNForwarder: Sets up a NFN computation node

	SimpleFetch: Tool to fetch a single content object (without chunking)

	Layers: Contains one packet per layer

	ChunkLayer: Chunking layer

	ICNLayer: CCN network layer

	Content Store: CS data structure

	ForwardingInformationBase: FIB data structure

	PendingInterest Table: PIT data structure

	LinkLayer: Link layer (face management)

	NFNLayer: Computation (NFN) layer

	NFNEvaluator: NFN execution engine

	Parser: Parser for computation expressions

	PacketEncodingLayer: Conversion between wire format packets and python objects

	RepositoryLayer: Persistent data storage

	Logger: Logging helpers

	Mgmt: Management interface

	Packets: Wire format helpers

	Processes: Communication between layers

	ProgramLibs: Layer compositions (See "Executable" package for starter scripts)

	Fetch: Simple fetch tool

	ICNDataRepository: CCN repository

	ICNForwarder: CCN forwarder

	NFNForwarder: NFN forwarder

	Routing: TBD (routing solution should go in here)

PiCN Toolbox

The PiCN toolbox contains:

	picn-relay

	picn-peek

	picn-repo

	picn-fetch

	picn-mgmt

PiCN Forwarder

usage: picn-relay [-h] [-p PORT] [-f {ndntlv,simple}]
 [-l {debug,info,warning,error,none}]

optional arguments:
 -h, --help show this help message and exit
 -p PORT, --port PORT UDP port (default: 9000)
 -f {ndntlv,simple}, --format {ndntlv,simple}
 Packet Format (default: ndntlv)
 -l {debug,info,warning,error,none}, --logging {debug,info,warning,error,none}
 Logging Level (default: info)

Fetching a single content object (without chunking)

usage: picn-peek [-h] [-i IP] [-p PORT] [-f {ndntlv,simple}] name

positional arguments:
 name CCN name of the content object to fetch

optional arguments:
 -h, --help show this help message and exit
 -i IP, --ip IP IP address or hostname of forwarder (default: 127.0.0.1)
 -p PORT, --port PORT UDP port (default: 9000)
 -f {ndntlv,simple}, --format {ndntlv,simple}
 Packet Format (default: ndntlv)

Starting a Repository

usage: picn-repo [-h] [--format FORMAT] datapath icnprefix port

ICN Data Repository

positional arguments:
 datapath filesystem path where the repo stores its data
 icnprefix prefix for all content stored in this repo
 port the repo's UDP and TCP port (TCP only for MGMT)

optional arguments:
 -h, --help show this help message and exit
 --format FORMAT

Fetch a high-level object (i.e. handle chunking)

usage: picn-fetch [-h] [--format {ndntlv, simple}] ip port name

ICN Fetch Tool

positional arguments:
 ip IP addr of forwarder
 port UDP port of forwarder
 name ICN name of content to fetch

optional arguments:
 -h, --help Show this help message and exit
 --format {ndntlv, simple} Packet Format (default is: ndntlv)

Send a Management Command to an Instance

usage: picn-mgmt [-h] [-i IP] [-p PORT]
 {shutdown,getrepoprefix,getrepopath,newface,newforwardingrule,newcontent}
 [parameters]

Management Tool for PiCN Forwarder and Repo

positional arguments:
 {shutdown,getrepoprefix,getrepopath,newface,newforwardingrule,newcontent} Management Command
 parameters Command Parameter

optional arguments:
 -h, --help show this help message and exit
 -i IP, --ip IP IP address or hostname of forwarder (default: 127.0.0.1)
 -p PORT, --port PORT UDP port of forwarder(default: 9000)

Management Commands and Parameters

Create new face

newface < ip >:< targetport >

Attach forwarding rule to existing face

newforwardingrule < name >:< faceid >

Add content to cache

newcontent < name >:< data >

Shutdown instance

shutdown

Tutorial

Part I: Setting up a Content-Centric Network

tbd

Part II: More λ into the Net!

tbd

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 <no title>

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

